
CSC454
Distributed Networking (DN)

Handbook

compiled by
Abhishek Tamrakar
Linus Dhakal
Pranesh Dhunju Shrestha
Rojesh Tamrakar

Unit 1

Protocols

Separate machines are connected via a physical network, and computers pass messages to each

other using an appropriate protocol. Networking operating system services interface to the network

via the kernel and contains complex algorithms to deal with transparency, scheduling, security,

fault tolerance, etc. They provide peer-to-peer communication services and user applications

directly access the services, or the middleware.

Middleware is a high level of OS services. Protocol is a "well-known set of rules and formats to

be sued for communications between processes in order to perform a given task". Protocols specify

the sequence and format of messages to be exchanged.

Protocol layers exist to reduce design complexity and improve portability and support for change.

Networks are organized as series of layers or levels each built on the one below. The purpose of

each layer is to offer services required by higher levels and to shield higher layers from the

implementation details of lower layers.

Each layer has an associated protocol, which has two interfaces: a service interface - operations on

this protocol, callable by the level above and a peer-to-peer interface, messages exchanged with

the peer at the same level.

No data is directly transferred from layer n on one machine to layer n on another machine. Data

and control pass from higher to lower layers, across the physical medium and then back up the

network stack on the other machine.

As a message is passed down the stack, each layer adds a header (and possibly a tail such as a

checksum, although this is most common at the bottom of the stack) and passes it to the next layer.

As a message is received up the stack, the headers are removed and the message routed

accordingly.

As you move down the stack, layers may have maximum packet sizes, so some layers may have

to split up the packet and add a header on each packet before passing each individual packet to the

lower layers.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar
1

Some protocol design issues include identification (multiple applications are generating many

messages and each layer needs to be able to uniquely identify the sender and intended recipient of

each message), data transfer alternatives (simplex, half and full duplex), EDC error control (error

detection and correction - depends on environment e.g., SNR and application requirements),

message order preservation and swamping of a slow receiver by a fast sender (babbling idiot

problem, when a failed node swamps a databus with nonsense).

We can also consider two types of protocols, connection vs. connectionless. Connection

orrientated services are where a connection is created and then messages are received in the order

they are sent, a real world analogy is the POTS. Connectionless services are where data is sent

independently. It is dispatched before the route is known and it may not arrive in the order sent, a

real world analogy here is the postal system.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar
2

Connectionless and Connection Oriented Protocols

 Connection-oriented Requires a session connection (analogous to a phone call) be

established before any data can be sent. This method is often called a "reliable" network

service. It can guarantee that data will arrive in the same order. Connection-oriented

services set up virtual links between end systems through a network, as shown in Figure

1. Note that the packet on the left is assigned the virtual circuit number 01. As it moves

through the network, routers quickly send it through virtual circuit 01.

 Connectionless Does not require a session connection between sender and receiver.

The sender simply starts sending packets (called datagrams) to the destination. This

service does not have the reliability of the connection-oriented method, but it is useful for

periodic burst transfers. Neither system must maintain state information for the systems

that they send transmission to or receive transmission from. A connectionless network

provides minimal services.

Protocol Stacks

OSI Reference Model

The ISO Open Systems Interconnections (OSI) reference model deals with connecting open

networked systems. The key principles of the OSI are:

 layers are created when different levels of abstraction are needed

 the layer should perform a well-defined function

 the layer function should be chosen with international standards in mind

 layer boundaries should be chosen to minimize information flow between layers

 the number of layers should be: large enough to prevent distinct functions being

thrown together, but small enough to prevent the whole architecture being unwieldy

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar
3

Layer Description Examples

Application

(APP)

Protocols that are designed to meet the communication

requirements of specific applications, often defining the

interface to a service.

HTTP, FTP,

SMTP, CORBA

IIOP

Presentation

(SECURITY)

Protocols at this level transmit data in a network

representation that is independent of the representations

used in individual computers, which may differ.

SSL, CORBA Data

Representation

Session

(ERRORS)

At this level, reliability and adaptation are performed, such

as detection of failures and automatic recovery.

Transport

(TRANS)

This is the lowest level at which messages (rather than

packets) are handled. Messages are addressed to

communication ports attached to processes. Protocols in

this layer be connection-orientated or connectionless.

TCP, UDP

Network

(ROUTING)

Transfers data packets between computers in a specific

network. In a WAN or an inter-network this involves

generation of a route passing through routers. In a single

LAN, no routing is required.

IP, ATM virtual

circuits

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

4

Data link

(DATA)

Responsible for transmission of packets between nodes that

are directly connected by a physical link. In a WAN,

transmission is between pairs of routers or between routers

and hosts. In a LAN it is between a pair of hosts.

Ethernet MAC,

ATM cell transfer,

PPP

Physical

(WIRES)

The circuits and hardware that drive a network. It transmits

sequences of binary data by analogue signaling, using AM

or FM of electrical signals (on cable circuits), light signals

(on fiber optic circuits) or other EM signals (on radio or

microwave circuits).

Ethernet based-

band signaling,

ISDN

Messages and headers combine to form packets - the bits that actually appear on the network.

TCP/IP Reference Model

The TCP/IP reference model originated from research in 1974 using the ARPANET (predecessor

to the modern Internet). TCP/IP does not have session or presentation layers, which are only really

needed in applications with specific requirements, and the data link and physical layers are

combined to form one layer.

Protocols within the TCP/IP model include Telnet, FTP, SMTP and DNS at the application layers,

TCP and UDP in the transport layer, IP in the network/Internet layer and ARPANET, SATNET,

AX.25 and Ethernet in the physical/data-link layer.

The OSI and the TCP/IP models both have advantages and disadvantages. For example, the OSI

model is well defined with the model before the protocols, whereas the TCP/IP model defined

protocols first and then retrofitted a model on top. The number of layers is also different, although

both have the network, transport and application layers the same. There are also different levels of

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

5

support for higher-level services - these are the key differences. OSI supports connectionless and

connection-orientated communication in the network layer and connection orientated only in the

transport layer, whereas TCP/IP supports connectionless in the network layer and both in the

transport layer, so users are given an important choice.

OSI suffers from the standard criticism that can be applied to all ISO standards, which is that it

was delivered too late, it is over complicated and developed from the viewpoint of telecoms.

Additionally, the implementations of it are poor when compared to TCP/IP as implemented on

UNIX. Additionally, politics were poor, as it was forced on the world, and was resisted in favor of

UNIX and TCP/IP.

The TCP/IP model has the problem of only being able to support TCP/IP protocols, whilst the OSI

model can include new protocols. There is very little to distinguish between the data link and

physical layers, which do very different jobs. TCP/IP is the result of hacking by graduate students,

so there is little design behind it.

Internetworking- bridges and routers

Bridges

Bridges act at the data-link layer and connect two or more network segments or LANs (however,

they must be of the same type). They have an accept-and-forward strategy, and perform a basic

level of routing. They usually do not alter a packet header.

Bridges do have the problem of not scaling, as the spanning tree algorithm does not scale, and

having a single designated bridge can be a bottleneck. Additionally, it does not accommodate

heterogeneity (bridges make use of frame headers, so they can only support networks with the

same format for addresses). Additionally, different MTUs can cause problems.

Routers

Routers are capable of providing interconnects between different sorts of LANs and WANs.

Internet design and evolution:

The Internet is a global system of interconnected computer networks that use the standard Internet

protocol suite (often called TCP/IP, although not all applications use TCP) to serve billions of

users worldwide. It is a network of networks that consists of millions of private, public, academic,

business, and government networks, of local to global scope, that are linked by a broad array of

electronic, wireless and optical networking technologies. The Internet carries an extensive range

of information resources and services, such as the interlinked hypertext documents of the World

Wide Web (WWW) and the infrastructure to support email.

Internet is a short form of the technical term internetwork, the result of interconnecting computer

networks with special gateways or routers. The Internet is also often referred to as the Net.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

6

The terms Internet and World Wide Web are often used in everyday speech without much

distinction. However, the Internet and the World Wide Web are not one and the same. The Internet

establishes a global data communications system between computers. In contrast, the Web is one

of the services communicated via the Internet. It is a collection of interconnected documents and

other resources, linked by hyperlinks and URLs.

Unit 2

Network Design Styles

Distributed systems are often complex pieces of software of which the com-ponents are by definition

dispersed across multiple machines. To master their complexity, it is crucial that these systems are

properly organized. There are dif-ferent ways on how to view the organization of a distributed system,

but an obvi-ous one is to make a distinction between the logical organization of the collection of

software components and on the other hand the actual physical realization. The organization of

distributed systems is mostly about the software com-ponents that constitute the system. These

software architectures tell us how the various software components are to be organized and how they

should interact. In this chapter we will first pay attention to some commonly applied approaches toward

organizing (distributed) computer systems.

Several styles have by now been identified, of which the most important ones for distributed systems

are:

 Layered architectures

 Object-based architectures

 Data-centered architectures

 Event-based architectures

The basic idea for the layered style is simple: components are organized in a layered fashion where a

component at layer L; is allowed to call components at the underlying layer Li:«, but not the

other way around, as shown in Fig. 2-I(a). A key observation is that control generally flows

from layer to layer: requests go down the hierarchy whereas the results flow upward.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

7

A far looser organization is followed in object-based architectures, which are illustrated in Fig. 2-

1(b). In essence, each object corresponds to what we have defined as a component, and these

components are connected through a (remote) procedure call mechanism. Not surprisingly, this

software architecture matches the client-server system architecture we described above.

Data-centered architectures evolve around the idea that processes communicate through a common

(passive or active) repository. It can be argued that for distributed systems these architectures are as

important as the layered and objectbased architectures. For example, a wealth of networked

applications have been developed that rely on a shared distributed file system in which virtually all

communication takes place through files.

In event-based architectures, processes essentially communicate through the propagation of events,

which optionally also carry data, as shown in Fig. 2-2(a). For distributed systems, event propagation

has generally been associated with what are known as publish/subscribe systems. The basicidea is that

processes publish events after which the middleware ensures that onlythose processes that subscribed

to those events will receive them. The main advantage of event-based systems is that processes are

loosely coupled. In principle, they need not explicitly refer to each other.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

8

Event-based architectures can be combined with data-centered architectures, yielding what is also

known as shared data spaces. The essence of shared data spaces is that processes are now also

decoupled in time: they need not both be active when communication takes place. What makes these

software architectures important for distributed systems is that they all aim at achieving (at a reasonable

level) distribution transparency. However, as we have argued, distribution transparency requires

making trade-offs between performance, fault tolerance, ease-of-programming, and so on.

Network Designs

Centralized Designs

Despite the lack of consensus on many distributed systems issues, there is one issue that many

researchers and practitioners agree upon: thinking in terms of cli-ents that request services from servers

helps us understand and manage the com-plexity of distributed systems and that is a good thing.

In the basic client-server model, processes in a distributed system are divided into two (possibly

overlapping) groups. A server is a process implementing a specific service, for example, a file system

service or a database service. A client is a process that requests a service from a server by sending it a

request and subsequently waiting for the server's reply. This client-server interaction, also known as

request-reply behavior is shown in Fig. 2-3

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

9

Communication between a client and a server can be implemented by means of a simple connectionless

protocol when the underlying network is fairly reliable as in many local-area networks. In these cases,

when a client requests a service, it simply packages a message for the server, identifying the service it

wants, along with the necessary input data. The message is then sent to the server. The latter, in turn,

will always wait for an incoming request, subsequently process it, and package the results in a reply

message that is then sent to the client.

Application Layering

The client-server model has been subject to many debates and controversies over the years. One of the

main issues was how to draw a clear distinction between a client and a server. Not surprisingly, there

is often no clear distinction. For example, a server for a distributed database may continuously act as

a client because it is forwarding requests to different file servers responsible for implementing the

database tables. In such a case, the database server itself essentially does no more than process queries.

However, considering that many client-server applications are targeted toward supporting user access

to databases, many people have advocated a distinction between the following three levels, essentially

following the layered architectural style we discussed previously:

1. The user-interface level

2. The processing level

3. The data level

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

10

The user-interface level contains all that is necessary to directly interface with the user, such as display

management. The processing level typically contains the applications. The data level manages the

actual data that is being acted on.

Consider an Internet search engine. Ignoring all the animated banners, images, and other fancy window

dressing, the user interface of a search engine is very simple: a user types in a string of keywords and

is subsequently presented with a list of titles of Web pages. The back end is formed by a huge database

of Web pages that have been prefetched and indexed. The core of the search engine is a program that

transforms the user's string of keywords into one or more database queries. It subsequently ranks the

results into a list, and transforms that list into a series of HTML pages. Within the client-server model,

this information retrieval part is typically placed at the processing level. Fig. 2-4 shows this

organization.

Multitiered Architecture

The distinction into three logical levels as discussed so far, suggests a number of possibilities for

physically distributing a client-server application across several machines. The simplest organization

is to have only two types of machines:

1. A client machine containing only the programs implementing (part of) the user-interface level

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

11

2. A server machine containing the rest, that is the programs implementing the processing and data

level.

In this organization everything is handled by the server while the client is essentially no more than a

dumb terminal, possibly with a pretty graphical interface. There are many other possibilities, of which

we explore some of the more common ones in this section. One approach for organizing the clients

and servers is to distribute the programs in the application layers of the previous section across different

machines, as shown in Fig. 2-5

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

12

In this architecture, programs that form part of the processing level reside on a separate server, but may

additionally be partly distributed across the client and server machines. A typical example of where a

three-tiered architecture is used is in transaction processing. As we discussed in Chap. 1, a separate

process, called the transaction processing monitor, coordinates all transactions across possibly different

data servers.

Decentralized Architecture

Multitiered client-server architectures are a direct consequence of dividing ap-plications into a user-

interface, processing components, and a data level. The dif-ferent tiers correspond directly with the

logical organization of applications. In many business environments, distributed processing is

equivalent to organizing a client-server application as a multitiered architecture. We refer to this type

of dis-tribution as vertical distribution. The characteristic feature of vertical distribu-tion is that it is

achieved by placing logically different components on different machines. The term is related to the

concept of vertical fragmentation as used in distributed relational databases, where it means that tables

are split column-wise, and subsequently distributed across multiple machines.

Structured Peer-to-Peer Architectures

In a structured peer-to-peer architecture, the overlay network is constructed using a deterministic

procedure. By far the most-used procedure is to organize the processes through a distributed hash table

(DHT). In a DHT -based system, data items are assigned a random key from a large identifier space,

such as a 128-bit or 160-bit identifier. Likewise, nodes in the system are also assigned a random number

from the same identifier space.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

13

Unstructured Peer-to- Peer Architectures

Unstructured peer-to-peer systems largely rely on randomized algorithms for constructing an overlay

network. The main idea is that each node maintains a list of neighbors, but that this list is constructed

in a more or less random way. Likewise, data items are assumed to be randomly placed on nodes. As

a consequence, when a node needs to locate a specific data item, the only thing it can effectively do is

flood the network with a search query.

Topology Management

Although it would seem that structured and unstructured peer-to-peer systems form strict independent

classes, this 'need actually not be case [see also Castro et al. (2005)]. One key observation is that by

carefully exchanging and selecting entries from partial views, it is possible to construct and maintain

specific topologies of overlay networks. This topology management is achieved by adopting a

twolayered approach, as shown in Fig. 2-10.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

14

Interoperability

Interoperability is the ability of a system or a product to work with other systems or products without

special effort on the part of the customer. Interoperability becomes a quality of increasing importance

for information technology products as the concept that "The network is the computer" becomes a

reality. For this reason, the term is widely used in product marketing descriptions.

Products achieve interoperability with other products using either or both of two approaches:

product's interface into another

product's interface "on the fly"

A good example of the first approach is the set of standards that have been developed for the World

Wide Web. These standards include TCP/IP, Hypertext Transfer Protocol, and HTML. The second

kind of interoperability approach is exemplified by the Common Object Request Broker Architecture

(CORBA) and its Object Request Broker (ORB).

Compatibility is a related term. A product is compatible with a standard but interoperable with other

products that meet the same standard (or achieve interoperability through a broker).

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

15

Client-Server Interoperability

Reusability of servers is a critical issue for both users and software manufacture due to the high cost

of software writing. This issue could be easily resolved in a homogeneous environment because

accessing mechanisms of clients may be made compatible with software interfaces, with static

compatibility specified by types and dynamic compatibility by protocols.

There are two major mechanisms for interoperation:

1. Interface standardisation: the objective of this mechanism is to map client and server interfaces to a

common representation.

The advantages of this mechanism are:

(i) it separates communication models of clients from those of servers, and

(ii) it provides scalability, since it only requires m + n mappings, where m and n are the number of

clients and servers, respectively. The disadvantage of this mechanism is that it is closed.

2. Interface bridging: the objective of this mechanism is to provide a two-way mapping between a

client and a server. The advantages of this mechanism are:

(i) openness, and

(ii) flexibility — it can be tailored to the requirements of a given client and server pair. However, this

mechanism does not scale as well as the interface standardisation mechanism, as it requires m * n

mappings.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

16

Openness

Determines whether the system can be extended in various ways without disrupting existing system

and services

Hardware extensions (adding peripherals, memory, communication interfaces..)

Software extensions (Operating System features, Communication protocols)

Mainly achieved using published interfaces, standardization
Great example of a distributed, standards-focused effort

Open Distributed Systems

Are characterized by the fact that their key interfaces are published

e.g., HTTP Protocol,

Based on the provision of a uniform interprocess communication mechanism and published interfaces

for access to shared resources

Can be constructed from heterogeneous hardware and software.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

17

The Client Server Model

A distributed computing system is a set of application and system programs, and data dispersed across

a number of independent personal computers connected by a communication network. In order to

provide requested services to users the system and relevant application programs must be executed.

Because services are provided as a result of executing programs on a number of computers with data

stored on one or more locations, the whole computing activity is called distributed computing.

Basic Concepts

The problem is how to formalise the development of distributed computing. The above shows that the

main issue of distributed computing is programs in execution, which are called processes. The second

issue is that these processes cooperate or compete in order to provide the requested services. This

means that these processes are synchronised.

A natural model of distributed computing is the client-server model, which is able to deal with the

problems generated by distribution, could be used to describe computation processes and their

behaviour when providing services to users, and allows design of system and application software for

distributed computing systems.

According to this model there are two processes, the client, which requests a service from another

process, and the server, which is the service provider. The server performs the requested service and

sends back a response. This response could be a processing result, a confirmation of completion of the

requested operation or even a notice about a failure of an operation.

From the user’s point of view a distributed computing system can provide the following services:

printing, electronic mail, file service, authentication, naming, database service and computing service.

These services are provided by appropriate servers. Because of the restricted number of servers

(implied by a restricted number of resources on which these servers were implemented), clients

compete for these servers.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

18

An association between this abstract model and its physical implementation is shown in Figure 2.1. In

particular the basic items of the model: the client and server, and request and response are shown. In

this case, the client and server processes execute on two different computers. They communicate at the

virtual (logical) level by exchanging requests and responses. In order to achieve this virtual

communication, physical messages are sent between these two processes. This implies that operating

systems of computers and a communication system of a distributed computing system are actively

involved in the service provision.

A more detailed client-server model has three components:

Service: A service is a software entity that runs on one or more machines. It provides an abstraction

of a set of well-defined operations in response to applications’ requests.

Server: A server is an instance of a particular service running on a single machine.

Client: A client is a software entity that exploits services provided by servers. A client can but does

not have to interface directly with a human user.

There are three major problems of the client-server model:

The first is due to the fact that the control of individual resources is centralised in a single server. This

means that if the computer supporting a server fails, then that element of control fails. Such a solution

is not tolerable if a control function of a server is critical to the operation of the system (e.g., a name

server, a file server, an authentication server). Thus, the reliability and availability of an operation

depending on multiple servers is a product of reliability of all computers and devices, and

communication lines.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

19

The second problem is that each single server is a potential bottleneck. The problem is exacerbated as

more computers with potential clients are added to the system.

The third problem arises when multiple implementations of similar functions are used to improve the

performance of a client-server based system because of a need to maintain consistency. Furthermore,

this increases the total costs of a distributed computing system.

The Three-Tier Client-Server Architecture

Agents and servers acting as clients can generate different architectures of distributed computing

systems. The three-tier client-server architecture extends the basic client-server model by adding a

middle tier to support the application logic and common services. In this architecture, a distributed

application consists of the following three types of components:

User interface and presentation processing. These components are responsible for accepting inputs

and presenting the results. They belong to the client tier;

Computational function processing. These components are responsible for providing transparent,

reliable, secure, and efficient distributed computing. They are also responsible for performing

necessary processing to solve a particular application problem. We say these components belong to the

application tier;

Data access processing. These components are responsible for accessing data stored on external

storage devices (such as disk drives). They belong to the back-end tier.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

20

Workstations

A workstation is a special computer designed for technical or scientific applications. Intended primarily

to be used by one person at a time, they are commonly connected to a local area network and run multi-

user operating systems. The term workstation has also been used loosely to refer to everything from a

mainframe computer terminal to a PC connected to a network, but the most common form refers to the

group of hardware offered by several current and defunct companies such as Sun Microsystems,

Silicon Graphics, Apollo Computer, DEC, HP, NeXT and IBM which opened the door for the 3D

graphics animation revolution of the late 1990s.

Workstations offered higher performance than mainstream personal computers, especially with respect

to CPU and graphics, memory capacity, and multitasking capability. Workstations were optimized for

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

21

the visualization and manipulation of different types of complex data such as 3D mechanical design,

engineering simulation (e.g., computational fluid dynamics), animation and rendering of images, and

mathematical plots. Typically, the form factor is that of a desktop computer, consist of a high resolution

display, a keyboard and a mouse at a minimum, but also offer multiple displays, graphics tablets, 3D

mice (devices for manipulating 3D objects and navigating scenes), etc. Workstations were the first

segment of the computer market to present advanced accessories and collaboration tools.

Unit 3
 Inter-process Communication.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

22

 The API for the Internet protocols

Characteristics of IPC

Communication operations (defined in terms of destinations & message)

• Send

• Receive

Synchronous

• blocking send – sending process blocked until corresponding receive issued

• blocking receive – receiving process blocked until a message arrives

Asynchronous

• non-blocking send – sending process proceeds with message being copied

to local buffer

• blocking/non-blocking receive

Message Destination

• IP address & port

• Location transparency

• Send directly to processes

• Multicast to a group of process

Reliability- validity & integrity

Ordering- message to be delivered in sender order

Sockets – Both UDP and TCP use the socket abstraction, with provides an endpoint for

communication between processes.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

23

UDP datagram communication

•Message size (up to 216 bytes)

•Blocking: non-blocking send, blocking receive

•Timeouts- when a receive operation waiting indefinitely is inappropriate

•Receive from any

•Failure Model (Omission, Ordering)

•Use of UDP (eg. DNS, Less overhead- state info., extra message, latency)

Java API for UDP datagram

UDP client sends a message to the server and gets a reply
import java.net.*;

import java.io.*

public class UDPClient{

public static void main(String args[]){

//args give message contents and server hostname

try{

DatagramSocket aSocket = new DatagramSocket();

byte[] m = args[0].getBytes();

InetAddress aHost = InetAddress.getByName(args[1]);

int serverPort = 6789;

DatagramPacket request =

new DatagramPacket(m,args[0].length(), aHost,serverPort);

aSocket.send(request);

byte[] buffer = new byte[1000];

DatagramPacket reply =

new DatagramPacket(buffer,buffer.length);

aSocket.receive(reply);

System.out.println("Reply:"+new String(reply.getData()));

aSocket.close();

}catch(SocketException e)

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar
24

{System.out.println("Socket:"+e.getMessage());

}catch(IOException e){System.out.println("IO:"+e.getMessage();}

}}

UDP server repeatedly receives a request and sends it back to the client
import java.net.*

import java.io.*

public class UDPServer{

public static void main(String args[]){

try{

DatagramSocket aSocket = new DatagramSocket(6789);

byte[] buffer = new byte[1000];

while(true){

DatagramPacket request =

new datagramPacket(buffer, buffer.length);

aSocket.receive(request);

DatagramPacket reply =

new DatagramPacket(request.getData(),

request.getLength(), request.getAddress(),

request.getPort());

aSocket.send(reply);

}

}catch(SocketException e)

{System.out.println("Socket:" + e.getMessage());

}catch(IOException e)

{System.out.println("IO:" + e.getMessage());}

}

}

TCP stream communication

Characteristics

•Message size - Unlimited

•Lost Messages - Acknowledgement

•Flow Control- matching speeds of processes reading from & writing to stream

•Message duplication and order- message identifiers

•Message destination- establishing connection before transmission

Outstanding Issues

•Matching of data items

•Blocking- TCP flow control

•Threads

•Failure model – integrity(checksum, sequence nos.), validity (timeouts)

•Use of TCP: http, ftp, telnet, smtp

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

25

 External data representation

•Info in running programs represented as data structures

•Info in message represented as sequence of bytes

•Flattening of data structures (into sequence of bytes) before transmission

•Different ways to represent int, float, char...

•Byte ordering for integer- big & little - endian

•Enabling exchange of data values

•Convert values into standard external data representation

•Send in sender's format and indicates what format, receivers translate if necessary.

•External data representation- an agreed standard for the representation of

data structures & primitives values

•Marshalling

•Taking a collection of data items & assembling them into a form suitable

for transmission in a message

•Translation of structured data items & primitive values into external data

representation

•Demarshalling

•Generation of primitive values from external data representation

•Rebuilding of data structures

Three Approaches to External Data Representation

1. •CORBA

2. •Java’s object serialization

3. •XML

1. CORBA Common Data Representation (CRD) message

•Primitive types- short, long, double, char, boolean…

•Constructed types

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar
26

CORBA CDR message

•CORBA IDL complier generates marshalling and unmarshalling routines

•Types of data str. & basic data items described in CORBA Interface

Description Language (IDL)

•Structure with string, unsigned long

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar
27

2. Java object serialization

•Serialization- flattening of object or a connected set of objects into a serial form

to be transmitted or stored on the disk

•De-seralization – restoring the state of an object or a set of objects from their

serialized form

• No knowledge of the types of objects in the serialized form during de-seralization

•Info about the class of each object is in serialized form – class name, version no.

3. Extensible markup language (XML)
•User-defined tags

•Different Apps agree on different set of tags

•e.g. REST, Simple Object Access Protocol (SOAP) for web serves, tags are published

•Tags are in plain text

Illustration of the use of a namespace in the person structure

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

28

 Client-server communication

•Synchronous (client waits for a reply)

•Asynchronous (client doesn't wait)

Request/reply protocol

UDP – Failure Handling

• Timeout

• Discard of duplicates

• Lost replies - idempotent operations(performed repetitively)

• History- referring a str. containing a transmitted reply record

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

29

RPC exchange protocols

• Request (R)

• Request/Reply (RR)

• Request/Reply/Acknowledge Reply(RRA)

TCP implementation of Request/Reply Protocols

• HTTP example – allows persistent connection

• HTTP methods – GET, HEAD, POST, PUT, DELETE, OPTIONS,TRACE

• HTTP Message contents

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

30

 Group Communication

• Multicast Operation- a single message sent from one Process to all members of a group

• Helpful in attending DS with

• High fault tolerance based on replicated services

• Can locate servers

• Better performance thru replication

• Propagation of event notifications

IP Multicast

 Multicast Group

 Multicast Routers

 Multicast Address Allocation

IP Multicast – Failure Models

• Same as UDP – no guarantee of delivery

• Effects:

• Replicated services – all or none msg receipt

• Discovery servers – repeat requests

• Replicated Data

• Event Notifications – app determines qualities

Unix Inter-process Communication

 IPC in Unix

o Layered on TCP and UDP protocol

o Socket System call – binding to an address

o Message destinations = socket address

 Msg queues at sending socket

 Networking protocol transmits msg

 Msg queues at receiving socket

 Receiving process makes system call to receive

 msg.

Datagram Communication (UDP)

 Sockets identified in each communication

o Socket call

o Bind call

o Send to call

o Receive from call

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

31

Stream Communication (TCP)

 One server is ‘listening’ for requests

o Socket call for stream socket + bind + listen

o Accept call, create new socket

o Client process issues socket, connect

o Both use write/read

o Both close when communication is finished

 Summary

o UDP vs. TCP

o Marshalling data – CORBA, Java, XML

o Request/Reply Protocols

o Multicast Messages

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

32

Unit 4

Communication between distributed objects

The communication in distributed object is done by various middleware language like RMI

(remote invocation method), CORBA (common object request broker). Invoking a method on a

remote object is known as RMI or remote invocation, and is the object oriented programming

analog of an RPC. Distributed object communication realizes communication between distributed

objects. The widely used approach on how to implement the communication channel is realized

by using stub and skeletons.

Fig: Communication between distributed objects

In RMI, a stub is defined by the programmer as an interface then the stub passes caller arguments

over the network to the server skeleton. The skeleton then passes received data to the called object,

waits for a response and returns the result to the client stub.

Stub

The client side object in distributed object communication is known as a stub or proxy. The stub

acts as a gateway for client side objects and all outgoing requests to server-side objects that routed

through it. The stub wraps client object functionality & by adding the network logic ensures the

reliable communication channel between client & server. The stub can be written up manually or

generated automatically depending on chosen communication protocol.

Skeleton

The server side object participating in distributed object communication is known as skeleton. A

skeleton act as the gateway for server side objects & all incoming client’s requests are routed

through it. The skeleton wraps server object functionality & exposes it to the clients, moreover by

adding the network logic ensures the reliable communication channel between clients & server.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

33

Skeletons can be written up manually or generated automatically depending on chosen

communication protocol.

Remote Procedure Call

Remote Procedure Call (RPC) is a powerful technique for constructing distributed, client-server

based applications. It is based on extending the conventional local procedure calling, so that

the called procedure need not exist in the same address space as the calling procedure. The two

processes may be on the same system, or they may be on different systems with a network

connecting them.

When making a Remote Procedure Call:

1. The calling environment is suspended, procedure parameters are transferred across the network

to the environment where the procedure is to execute, and the procedure is executed there.

2. When the procedure finishes and produces its results, its results are transferred back to the

calling environment, where execution resumes as if returning from a regular procedure call.

NOTE: RPC is especially well suited for client-server (e.g. query-response) interaction in which

the flow of control alternates between the caller and callee. Conceptually, the client and server

do not both execute at the same time. Instead, the thread of execution jumps from the caller to the

callee and then back again.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

34

Working of RPC

The following steps take place during a RPC:
1. A client invokes a client stub procedure, passing parameters in the usual way. The client stub

resides within the client’s own address space.

2. The client stub marshalls(pack) the parameters into a message. Marshalling includes

converting the representation of the parameters into a standard format, and copying each parameter

into the message.

3. The client stub passes the message to the transport layer, which sends it to the remote server

machine.

4. On the server, the transport layer passes the message to a server stub,

which demarshalls(unpack) the parameters and calls the desired server routine using the regular

procedure call mechanism.

5. When the server procedure completes, it returns to the server stub (e.g., via a normal procedure

call return), which marshalls the return values into a message. The server stub then hands the

message to the transport layer.

6. The transport layer sends the result message back to the client transport layer, which hands the

message back to the client stub.

7. The client stub demarshalls the return parameters and execution returns to the caller.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

35

RPC ISSUES

 Issues that must be addressed:
1. RPC Runtime: RPC run-time system, is a library of routines and a set of services that handle

the network communications that underlie the RPC mechanism. In the course of an RPC call,

client-side and server-side run-time systems’ code handle binding, establish communications

over an appropriate protocol, pass call data between the client and server, and handle

communications errors.
2. Stub: The function of the stub is to provide transparency to the programmer-written

application code.

On the client side, the stub handles the interface between the client’s local procedure call and the

run-time system, marshaling and unmarshaling data, invoking the RPC run-time protocol, and if

requested, carrying out some of the binding steps.

On the server side, the stub provides a similar interface between the run-time system and the local

manager procedures that are executed by the server.

3. Binding: How does the client know who to call, and where the service resides?
The most flexible solution is to use dynamic binding and find the server at run time when the RPC

is first made. The first time the client stub is invoked, it contacts a name server to determine the

transport address at which the server resides.

Binding consists of two parts:
 Naming:

Remote procedures are named through interfaces. An interface uniquely identifies a particular

service, describing the types and numbers of its arguments. It is similar in purpose to a type

definition in programming languages.

 Locating:

Finding the transport address at which the server actually resides. Once we have the transport

address of the service, we can send messages directly to the server.

A Server having a service to offer exports an interface for it. Exporting an interface registers it

with the system so that clients can use it.

A Client must import an (exported) interface before communication can begin.

ADVANTAGES
1. RPC provides ABSTRACTION i.e message-passing nature of network communication is

hidden from the user.

2. RPC often omits many of the protocol layers to improve performance. Even a small performance

improvement is important because a program may invoke RPCs often.

3. RPC enables the usage of the applications in the distributed environment, not only in the local

environment.

4. With RPC code re-writing / re-developing effort is minimized.

5. Process-oriented and thread oriented models supported by RPC.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

36

Remote Object Invocation

Remote method invocation (RMI) is a distributed object technology developed by Sun for the Java

programming language. It is available as part of the core Java application programming interface

(API) where the object interfaces are defined as Java interfaces and use object serialization.

RMI permits Java methods to refer to a remote object and invoke methods of the remote object.

The remote object may reside on another Java virtual machine, the same host or on completely

different hosts across the network. RMI marshals and unmarshals method arguments through

object serialization and supports dynamic downloading of class files across networks.

RMI architecture extends the robustness and safety of Java architecture to the distributed

computing world. RMI allows the that code defines and implements the behavior to remain on

different Java virtual machines. Remote services in RMI are coded using a Java interface where

the implementation is coded in a class. In the first class, implementation of the behavior runs on

the server. The second class runs on the client and acts as a proxy for the remote service.

RMI is implemented as three layers:

 A stub program in the client side of the client/server relationship, and a corresponding skeleton

at the server end. The stub appears to the calling program to be the program being called for a

service. (Sun uses the term proxy as a synonym for stub.)

 A Remote Reference Layer that can behave differently depending on the parameters passed by

the calling program. For example, this layer can determine whether the request is to call a

single remote service or multiple remote programs as in a multicast.

 A Transport Connection Layer, which sets up and manages the request.

A single request travels down through the layers on one computer and up through the layers at the

other end.

The commonalities between RMI and RPC are as follows:

• They both support programming with interfaces, with the resultant benefits that stem

from this approach

• They are both typically constructed on top of request-reply protocols and can offer a

range of call semantics such as at-least-once and at-most-once.

• They both offer a similar level of transparency – that is, local and remote calls employ

the same syntax but remote interfaces typically expose the distributed nature of the

underlying call, for example by supporting remote exceptions.

The following differences lead to added expressiveness when it comes to the

programming of complex distributed applications and services.

• The programmer is able to use the full expressive power of object-oriented

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

37

http://whatis.techtarget.com/definition/stub
http://searchenterprisedesktop.techtarget.com/definition/client
http://searchnetworking.techtarget.com/definition/client-server

programming in the development of distributed systems software, including the

use of objects, classes and inheritance, and can also employ related object-

oriented design methodologies and associated tools.

• Building on the concept of object identity in object-oriented systems, all objects

in an RMI-based system have unique object references (whether they are local or

remote), such object references can also be passed as parameters, thus offering

significantly richer parameter-passing semantics than in RPC.

Message and Stream Oriented Communication

Message-Oriented Communication

Message-oriented communication is a way of communicating between processes. Messages,

which correspond to events, are the basic units of data delivered. Tanenbaum and Steen classified

message-oriented communication according to two factors---

synchronous or asynchronous communication, and transient or persistent communication. In

synchronous communication, the sender blocks waiting for the receiver to engage in the exchange.

Asynchronous communication does not require both the sender and the receiver to execute

simultaneously. So, the sender and recipient are loosely-coupled. The amount of time messages is

stored determines whether the communication is transient or persistent. Transient communication

stores the message only while both partners in the communication are executing. If the next router

or receiver is not available, then the message is discarded. Persistent communication, on the other

hand, stores the message until the recipient receives it.

A typical example of asynchronous persistent communication is Message-Oriented Middleware

(MOM). Message-oriented middleware is also called a message-queuing system, a message

framework, or just a messaging system. MOM can form an important middleware layer for

enterprise applications on the Internet. In the publish and subscribe model, a client can register as

a publisher or a subscriber of messages. Messages are delivered only to the relevant destinations

and only once, with various communication methods including one-to-many or many-to-many

communication. The data source and destination can be decoupled under such a model.

The Java Message Service (JMS) from Sun Microsystems provides a common interface for Java

applications to MOM implementations. Since JMS was integrated with the recent version of the

Java 2 Enterprise Edition (J2EE) platform, Enterprise Java Beans (EJB)---the component

architecture of J2EE---has a new type of bean, the message-driven bean. The JMS integration

simplifies the enterprise development, allowing a decoupling between components.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

38

Stream oriented communication

A (continuous) data stream is a connection-oriented communication facility that supports

isochronous data transmission

Some common stream characteristics:

• Streams are unidirectional. There is generally a single source, and one or more

sinks

• Often, either the sink and/or source is a wrapper around hardware (e.g., camera, CD

device, TV monitor, dedicated storage)

Stream types:

• Simple: consists of a single flow of data (e.g., audio or video)

• Complex: multiple data flows (e.g., stereo audio or combination audio/video)

• Issue: Streams can be set up between two processes at different machines, or directly

between two different devices. Combinations are possible as well.

Stream-oriented communication
 for continuous media

 in distributed systems

 management

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

39

Data Streams

• Data stream = sequence of data items

• Can apply to discrete, as well as continuous media

– e.g. UNIX pipes or TCP/IP connections which are both byte oriented (discrete)

streams

– Messages are related by send order

• Audio and video require continuous time-based data streams

• Asynchronous transmission mode: the order is important, and data is transmitted one

after the other, no restriction to when data is to be delivered

• Synchronous transmission mode defines a maximum end-to-end delay for individual data

packets

• Isochronous transmission mode has a maximum and minimum end-to-end delay

requirement (jitter is bounded)

– Not too slow, but not too fast either

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

40

Distributed Web-based systems

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

41

Common Carrier Services

INTRODUCTION

An entity that provides wired and wireless communication services to the general public for a fee.

It is contrasted with a contract carrier, also called a private carrier, which provides services to a

limited number of customers. It is licensed by a regulatory body(U.S.A- Federal Communications

Commission (FCC), under authorization of the Telecommunications Act of 1934.). By classifying

ISP’s as common carriers the FCC has banned ‘paid prioritization’—there will be no fast lanes

and slow lanes of the Internet. It supports Net Neutrality (the notion that all internet traffic,

regardless of its source, must be treated the same by Internet Service Providers (ISPs))

SERVICES

Satellite Transponder Sales

The FCC found that allowing the sale of satellite transponders would encourage additional satellite

entry and facility investment, allow for more efficient use of orbital slots and of the radio spectrum

and marketing innovation in the provision of domestic satellite services. The FCC also agreed with

the Department of Justice and the Federal Trade Commission that domestic satellite licenses did

not possess market power. The FCC has granted numerous applications allowing operators to

provide domestic fixed satellite transponders on a non-common carrier basis while the remaining

transponders on the satellite are offered under tariff.

Mass Media Services

The FCC followed this transponder sale approach in liberalizing regulation of the Microwave

Multipoint Distribution Service (MMDS). Applying the NARUC I test, the FCC concluded that

MMDS licenses could, at their election, designate some or all of their channels for non-common

carrier service, while providing common carrier service on other channels. The FCC predicted

benefits in giving MMDS visions the flexibility to operate on a non-common carriage status.

However, the FCC did not require the licenses to offer their services indiscriminately to the public,

because their new operations would take place in competitive markets.

Private Land Mobile Services

The FCC considered the regulatory status of private land mobile service and paging services and

found both services to be non-common carriage. In 1982, the FCC found that the cooperative

sharing of mobile voice telecommunications systems by multiple licenses was not common

carriage. The FCC rejected the notion that either the licenses or the entities which supplied

equipment to the licensees were common carriers. However, in the course of the proceeding, the

FCC did make public interest findings that such private licensing and shared use of facilities were

in the public interest. Congress has twice changed the Communications Act’s test for determining

whether a particular mobile service is common or private carriage.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

42

Private Microwave Services:

The FCC broadly defined common carriage when reviewing a number of microwave and fiber-

optic cable activities in order to keep those services outside the scope of common carriage and free

from the jurisdiction of state regulatory bodies. In 1985, the FCC freed private microwave

licensees to offer, on a for-profit basis, telecommunications services to other businesses eligible to

use these private frequencies. This new freedom was calculated to foster additional capacity and

increased usage of built capacity. Since the services would be offered on a very selective basis,

these carriers were distinguishable from common carriers.

LEGAL DIMENSION

In the purely legal dimension, Internet carriers seem presumptively to be common carriers. The

principal legal test for whether an entity is a common carrier is whether it has held itself out to

serve all indiscriminately, and most Internet carriers seem to do so. Internet carriers seem to exhibit

at least some of the public aspects which have accompanied the imposition of common carrier

duties, such as the indirect use of eminent domain powers and the manner in which the Internet

has become an essential aspect of commerce and communication for many people and industries.

The early involvement of ARPA and the NSF provided an important, direct government subsidy

to the development of the Internet, a factor which has often pointed in the direction of common

carrier regulation. Internet carriers are simply the most recent form of carrier, following the great

tradition of steamships, railroads, and telephones; and all of their predecessors have been subject

to some form of common carrier regulation.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

43

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

44

Unit 5

Distributed file system

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

45

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

46

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

47

Distributed object based system

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar
48

Synchronization

Introduction

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar
49

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

50

Fault Tolerance

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

51

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

52

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

53

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

54

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

55

Network File System (NFS)

Network File System (NFS) is a distributed file system (DFS) developed by Sun Microsystems.

This allows directory structures to be spread over the net- worked computing systems.

A DFS is a file system whose clients, servers and storage devices are dis- persed among the

machines of distributed system. A file system provides a set of file operations like read, write,

open, close, delete etc. which forms the file services. The clients are provided with these file

services. The basic features of DFS are multiplicity and autonomy of clients and servers.

NFS follows the directory structure almost same as that in non-NFS system but there are some

differences between them with respect to:

 Naming

 Path Names

 Semantics

Naming

Naming is a mapping between logical and physical objects. For example, users refers to a file by

a textual name, but it is mapped to disk blocks. There are two notions regarding name mapping

used in DFS.

 Location Transparency: The name of a file does not give any hint of file's physical

storage location.

 Location Independence: The name of a file does not need to be changed when file's

physical storage location changes.

A location independent naming scheme is basically a dynamic mapping. NFS does not support

location independency.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

56

There are three major naming schemes used in DFS. In the simplest approach, files are named by

some combination of machine or host name and the path name. This naming scheme is neither

location independent nor location transparent. This may be used in server side. Second approach

is to attach or mount the remote directories to the local directories. This gives an appearance of a

coherent directory. This scheme is used by NFS. Early NFS allowed only previously mounted

remote directories. But with the advent of automount , remote directories are mounted on demand

based on the table of mount points and file structure names. This has other advantages like the file-

mount table size is much smaller and for each mount point, we can specify many servers. The third

approach of naming is to use name space which is identical to all machines. In practice, there are

many special files that make this approach difficult to implement.

Mounting

The mount protocol is used to establish the initial logical connection between a server and a client.

A mount operation includes the name of the remote directory to be mounted and the name of the

server machine storing it. The server maintains an export list which specifies local file system that

it exports for mounting along with the permitted machine names. Unix uses /etc/exports for this

purpose. Since, the list has a maximum length, NFS is limited in scalabilty. Any directory within

an exported file system can be mounted remotely on a machine. When the server receives a mount

request, it returns a file handle to the client. File handle is basically a data-structure of length 32

bytes. It serves as the key for further access to files within the mounted system. In Unix term, the

file handle consists of a file system identifier that is stored in super block and an inode number to

identify the exact mounted directory within the exported file system. In NFS, one new field is

added in inode that is called the generic number.

Mount can be is of three types -

1. Soft mount: A time bound is there.

2. Hard mount: No time bound.

3. Automount: Mount operation done on demand.

NFS Protocol and Remote Operations

The NFS protocol provides a set of RPCs for remote operations like lookup, create, rename,

getattr, setattr, read, write, remove, mkdir etc. The procedures can be invoked only after a file

handle for the remotely mounted directory has been esta- blished. NFS servers are stateless servers.

A stateless file server avoids to keep state informations by making each request self-contained.

That is, each request iden- tifies the file and the position of the file in full. So, the server needs not

to store file pointer. Moreover, it needs not to establish or terminate a connection by opening a file

or closing a file, repectively. For reading a directory, NFS does not use any file pointer, it uses

a magic cookie.

Except the opening and closing a file, there is almost one-to-one mapping between Unix system

calls for file operations and the NFS protocol RPCs. A remote file operation can be translated

directly to the corresponding RPC. Though conceptu- ally, NFS adheres to the remote service

paradigm, in practice, it uses buffering and caching. File blocks and attributes are fetched by RPCs

and cached locally. Future remote operations use the cached data, subject to consistency

constraints.

Since, NFS runs on RPC and RPC runs on UDP/IP which is unreliable, operations should be

idempotent.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

57

Cache Update Policy

The policy used to write modified data blocks to the server's master copy has critical effect on the

system performance and reliability. The simplest policy is to write through the disk as soon as

they are placed on any cache. It's advantageous because it ensures the reliability but it gives poor

performance. In server site this policy is often followed. Another policy is delayed write. It does

not ensure reliability. Client sites can use this policy. Another policy is write-on-close. It is a

variation of delayed write. This is used by Andrews File System (AFS).

In NFS, clients use delayed write. But they don't free delayed written block until the server

confirms that the data have been written on disk. So, here, Unix semantics are not preserved. NFS

does not handle client crash recovery like Unix. Since, servers in NFS are stateless, there is no

need to handle server crash recovery also.

Time Skew

Because of differences of time at server and client, this problem occures. This may lead to

problems in performing some operations like " make ".

Performance Issues

To increase the reliability and system performance, the following things are generally done.

1. Cache, file blocks and directory informations are maintained.

2. All attributes of file / directory are cached. These stay 3 sec. for files and 30 sec. for

directory.

3. For large caches, bigger block size (8K) is benificial.

This is a brief description of NFS version 2. NFS version 3 has already been come out and this

new version is an enhancement of the previous version. It removes many of the difficulties and

drawbacks of NFS 2.

Andrews File System (AFS)

AFS is a distributed file system, with scalability as a major goal. Its efficiency can be attributed to

the following practical assumptions (as also seen in UNIX file system):

 Files are small (i.e. entire file can be cached)

 Frequency of reads much more than those of writes

 Sequential access common

 Files are not shared (i.e. read and written by only one user)

 Shared files are usually not written

 Disk space is plentiful

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

58

AFS distinguishes between client machines (workstations) and dedicated server machines.

Caching files in the client side cache reduces computation at the server side, thus enhancing

performance. However, the problem of sharing files arises. To solve this, all clients with copies of

a file being modified by another client are not informed the moment the client makes changes.

That client thus updates its copy, and the changes are reflected in the distributed file system only

after the client closes the file. Various terms related to this concept in AFS are:

 Whole File Serving: The entire file is transferred in one go, limited only by the maximum

size UDP/IP supports

 Whole File Caching: The entire file is cached in the local machine cache, reducing file-

open latency, and frequent read/write requests to the server

 Write On Close: Writes are propagated to the server side copy only when the client closes

the local copy of the file

In AFS, the server keeps track of which files are opened by which clients (as was not in the case

of NFS). In other words, AFS has stateful servers, whereas NFS has stateless servers. Another

difference between the two file systems is that AFS provides location independence (the physical

storage location of the file can be changed, without having to change the path of the file, etc.) as

well as location transparency (the file name does not hint at its physical storage location). But as

was seen in the last lecture, NFS provides only location transparency. Stateful servers in AFS allow

the server to inform all clients with open files about any updates made to that file by another client,

through what is known as a callback. Callbacks to all clients with a copy of that file is ensured as

a callback promise is issued by the server to a client when it requests for a copy of a file.

The key software components in AFS are:

 Vice: The server side process that resides on top of the unix kernel, providing shared file

services to each client

 Venus: The client side cache manager which acts as an interface between the application

program and the Vice

All the files in AFS are distributed among the servers. The set of files in one server is referred to

as a volume. In case a request can not be satisfied from this set of files, the vice server informs the

client where it can find the required file.

The basic file operations can be described more completely as:

 Open a file: Venus traps application generated file open system calls, and checks whether

it can be serviced locally (i.e. a copy of the file already exists in the cache) before

requesting Vice for it. It then returns a file descriptor to the calling application. Vice, along

with a copy of the file, transfers a callback promise, when Venus requests for a file.

 Read and Write: Reads/Writes are done from/to the cached copy.

 Close a file: Venus traps file close system calls and closes the cached copy of the file. If

the file had been updated, it informs the Vice server which then replaces its copy with the

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

59

updated one, as well as issues callbacks to all clients holding callback promises on this file.

On receiving a callback, the client discards its copy, and works on this fresh copy.

The server wishes to maintain its states at all times, so that no information is lost due to crashes.

This is ensured by the Vice which writes the states to the disk. When the server comes up again, it

also informs all the servers about its crash, so that information about updates may be passed to it.

A client may issue an open immediately after it issued a close (this may happen if it has recovered

from a crash very quickly). It will wish to work on the same copy. For this reason, Venus waits a

while (depending on the cache capacity) before discarding copies of closed files. In case the

application had not updated the copy before it closed it, it may continue to work on the same copy.

However, if the copy had been updated, and the client issued a file open after a certain time interval

(say 30 seconds), it will have to ask the server the last modification time, and accordingly, request

for a new copy. For this, the clocks will have to be synchronized.

Unit 6

Grid Computing:

Grid computing is a computer network in which each computer's resources are shared with every

other computer in the system. Processing power, memory and data storage are all community

resources that authorized users can tap into and leverage for specific tasks. A grid computing

system can be as simple as a collection of similar computers running on the same operating system

or as complex as inter-networked systems comprised of every computer platform you can think of.

Grid computing is the federation of computer resources from multiple administrative domains to

reach a common goal. The grid can be thought of as a distributed system with non-interactive

workloads that involve a large number of files. What distinguishes grid computing from

conventional high performance computing systems such as cluster computing is that grids tend to

be more loosely coupled, heterogeneous, and geographically dispersed. Although a single grid can

be dedicated to a particular application, commonly a grid is used for a variety of purposes. Grids

are often constructed with general-purpose grid middleware software libraries.

Grid size varies a considerable amount. Grids are a form of distributed computing whereby a

“super virtual computer” is composed of many networked loosely coupled computers acting

together to perform large tasks. For certain applications, “distributed” or “grid” computing, can be

seen as a special type of parallel computing that relies on complete computers (with onboard CPUs,

storage, power supplies, network interfaces, etc.) connected to a network (private, public or the

Internet) by a conventional network interface, such as Ethernet. This is in contrast to the traditional

notion of a supercomputer, which has many processors connected by a local high-speed computer

bus.

Grid computing combines computers from multiple administrative domains to reach a common

goal, to solve a single task, and may then disappear just as quickly. One of the main strategies of

grid computing is to use middleware to divide and apportion pieces of a program among several

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

60

computers, sometimes up to many thousands. Grid computing involves computation in a

distributed fashion, which may also involve the aggregation of large-scale cluster computing-based

systems.

The size of a grid may vary from small—confined to a network of computer workstations within

a corporation, for example—to large, public collaborations across many companies and networks.

"The notion of a confined grid may also be known as an intra-nodes cooperation whilst the notion

of a larger, wider grid may thus refer to an inter-node cooperation".

Virtualization:

Virtualization is the key to cloud computing, since it is the enabling technology allowing the

creation of an intelligent abstraction layer which hides the complexity of underlying hardware or

software.

Server virtualization enables different operating systems to share the same hardware and make it

easy to move operating systems between different hardware, all while the applications are running.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

61

Storage virtualization does the same thing for data. Storage virtualization creates the

abstraction layer between the applications running on the servers, and the storage they use to store

the data. Virtualizing the storage and incorporating the intelligence for provisioning and protection

at the virtualization layer enables companies to use any storage they want, and not be locked into

any individual vendor. Storage virtualization makes storage a commodity. All this makes for some

interesting ways for companies to reduce their costs.

Any discussion of cloud computing typically begins with virtualization. Virtualization is critical

to cloud computing because it simplifies the delivery of services by providing a platform for

optimizing complex IT resources in a scalable manner, which is what makes cloud computing so

cost effective. Virtualization can be applied very broadly to just about everything you can imagine

including memory, networks, storage, hardware, operating systems, and applications.

Virtualization has three characteristics that make it ideal for cloud computing:

- Partitioning: In virtualization, you can use partitioning to support many applications and

operating systems in a single physical system.

- Isolation: Because each virtual machine is isolated, each machine is protected from crashes and

viruses in the other machines. What makes virtualization so important for the cloud is that it

decouples the software from the hardware.

- Encapsulation: Encapsulation can protect each application so that it doesn’t interfere with other

applications. Using encapsulation, a virtual machine can be represented (and even stored) as a

single file, making it easy to identify and present to other applications.

To understand how virtualization helps with cloud computing, you must understand its many

forms. In essence, in all cases, a resource actually emulates or imitates another resource. Here are

some examples:

- Virtual memory: Disks have a lot more space than memory. PCs can use virtual memory to

borrow extra memory from the hard disk. Although virtual disks are slower than real memory, if

managed right, the substitution works surprisingly well.

- Software: There is virtualization software available that can emulate an entire computer, which

means 1 computer can perform as though it were actually 20 computers. Using this kind of

software, you might be able to move from a data center with thousands of servers to one that

supports as few as a couple of hundred.

To manage the various aspects of virtualization in cloud computing most companies use

hypervisors, an operating system that act as traffic cop managing the various virtualization tasks

in the cloud to ensure that they make the things happen in an orderly manner. Because in cloud

computing you need to support many different operating environments, the hypervisor becomes

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

62

an ideal delivery mechanism by allowing you to show the same application on lots of different

systems. Because hypervisors can load multiple operating systems, they are a very practical way

of getting things virtualized quickly and efficiently.

Cloud Computing

Cloud computing is the use of computing resources (hardware and software) that are delivered as

a service over a network (typically the Internet). The name comes from the use of a cloud-shaped

symbol as an abstraction for the complex infrastructure it contains in system diagrams. Cloud

computing entrusts remote services with a user's data, software and computation.

There are many types of public cloud computing: Infrastructure as a service (IaaS), Platform as a

service (PaaS), Software as a service (SaaS), Storage as a service (STaaS), Security as a service

(SECaaS), Data as a service (DaaS), Test environment as a service (TEaaS), Desktop as a service

(DaaS), API as a service (APIaaS).

Characteristics:

Cloud computing exhibits the following key characteristics:

- Agility improves with users' ability to re-provision technological infrastructure resources.

- Application programming interface (API) accessibility to software that enables machines to

interact with cloud software in the same way the user interface facilitates interaction between

humans and computers.

- Cost is claimed to be reduced and in a public cloud delivery model capital expenditure is

converted to operational expenditure. This is purported to lower barriers to entry, as infrastructure

is typically provided by a third-party and does not need to be purchased for one-time or infrequent

intensive computing tasks. Pricing on a utility computing basis is fine-grained with usage-based

options and fewer IT skills are required for implementation (in-house).

- Device and location independence enable users to access systems using a web browser regardless

of their location or what device they are using (e.g., PC, mobile phone). As infrastructure is off-

site (typically provided by a third-party) and accessed via the Internet, users can connect from

anywhere.

- Virtualization technology allows servers and storage devices to be shared and utilization be

increased. Applications can be easily migrated from one physical server to another.

- Multitenancy enables sharing of resources and costs across a large pool of users thus allowing

for:

o Centralization of infrastructure in locations with lower costs (such as real estate, electricity,

etc.)

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

63

o Peak-load capacity increases (users need not engineer for highest possible load-levels)

o Utilization and efficiency

- Reliability is improved if multiple redundant sites are used, which makes well designed cloud

computing suitable for business continuity and disaster recovery.

- Scalability and elasticity via dynamic ("on-demand") provisioning of resources on a fine-grained,

self-service basis near real-time, without users having to engineer for peak loads.

- Performance is monitored, and consistent and loosely coupled architectures are constructed using

web services as the system interface.

- Security could improve due to centralization of data, increased security-focused resources, etc.,

but concerns can persist about loss of control over certain sensitive data, and the lack of security

for stored kernels.

- Maintenance of cloud computing applications is easier, because they do not need to be installed

on each user's computer and can be accessed from different places.

Cloud Clients:

Users access cloud computing using networked client devices, such as desktop computers, laptops,

tablets and smartphones. Some of these devices - cloud clients – rely on cloud computing for all

or a majority of their applications so as to be essentially useless without it. Examples are thin

clients and the browser-based Chromebook. Many cloud applications do not require specific

software on the client and instead use a web browser to interact with the cloud application. With

Ajax and HTML5 these Web user interfaces can achieve a similar or even better look and feel as

native applications. Some cloud applications, however, support specific client software dedicated

to these applications (e.g., virtual desktop clients and most email clients). Some legacy applications

(line of business applications that until now have been prevalent in thin client Windows

computing) are delivered via a screen-sharing technology.

Cloud Service Models:

Cloud computing providers offer their services according to three fundamental models:

Infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS)

where IaaS is the most basic and each higher model abstracts from the details of the lower models.

Iaas:

In this most basic cloud service model, cloud providers offer computers, as physical or more often

as virtual machines, and other resources. The virtual machines are run as guests by a hypervisor,

such as Xen or KVM. Management of pools of hypervisors by the cloud operational support system

leads to the ability to scale to support a large number of virtual machines. Other resources in IaaS

clouds include images in a virtual machine image library, raw (block) and file-based storage,

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar

64

firewalls, load balancers, IP addresses, virtual local area networks (VLANs), and software bundles.

IaaS cloud providers supply these resources on demand from their large pools installed in data

centers. For wide area connectivity, the Internet can be used or—in carrier clouds -- dedicated

virtual private networks can be configured.

To deploy their applications, cloud users then install operating system images on the machines as

well as their application software. In this model, it is the cloud user who is responsible for patching

and maintaining the operating systems and application software. Cloud providers typically bill

IaaS services on a utility computing basis, that is, cost will reflect the amount of resources allocated

and consumed.

IaaS refers not to a machine that does all the work, but simply to a facility given to businesses that

offers users the leverage of extra storage space in servers and data centers. Examples of IaaS

include: Amazon CloudFormation (and underlying services such as Amazon EC2), Rackspace

Cloud, Terremark and Google Compute Engine.

Paas:

In the PaaS model, cloud providers deliver a computing platform typically including operating

system, programming language execution environment, database, and web server. Application

developers can develop and run their software solutions on a cloud platform without the cost and

complexity of buying and managing the underlying hardware and software layers. With some PaaS

offers, the underlying computer and storage resources scale automatically to match application

demand such that cloud user does not have to allocate resources manually. Examples of PaaS

include: Amazon Elastic Beanstalk, Heroku, EngineYard, Mendix, Google App Engine, Microsoft

Azure and OrangeScape.

Saas:

In this model, cloud providers install and operate application software in the cloud and cloud users

access the software from cloud clients. The cloud users do not manage the cloud infrastructure and

platform on which the application is running. This eliminates the need to install and run the

application on the cloud user's own computers simplifying maintenance and support. What makes

a cloud application different from other applications is its elasticity. This can be achieved by

cloning tasks onto multiple virtual machines at run-time to meet the changing work demand. Load

balancers distribute the work over the set of virtual machines. This process is inconspicuous to the

cloud user who sees only a single access point. To accommodate a large number of cloud users,

cloud applications can be multitenant, that is, any machine serves more than one cloud user

organization. It is common to refer to special types of cloud based application software with a

similar naming convention: desktop as a service, business process as a service, test environment

as a service, communication as a service.

The pricing model for SaaS applications is typically a monthly or yearly flat fee per user, so price

is scalable and adjustable if users are added or removed at any point. Examples of SaaS include:

Google Apps, innkeypos, Quickbooks Online, Limelight Video Platform, Salesforce.com and

Microsoft Office 365.

Abhishek Tamrakar ○ Linus Dhakal ○ Pranesh Dhunju Shrestha ○ Rojesh Tamrakar
65

	Blank Page

